A Cramer-Rao lower bound for complex parameters

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramer-Rao Lower Bound and Information Geometry

This article focuses on an important piece of work of the world renowned Indian statistician, Calyampudi Radhakrishna Rao. In 1945, C. R. Rao (25 years old then) published a pathbreaking paper [43], which had a profound impact on subsequent statistical research. Roughly speaking, Rao obtained a lower bound to the variance of an estimator. The importance of this work can be gauged, for instance,...

متن کامل

Particle filtering and Cramer-Rao lower bound for underwater navigation

We have studied a sea navigation method relying on a digital underwater terrain map and sonar measurements. The method is applicable for both ships and underwater vessels. We have used experimental data to build an underwater map and to investigate the estimation performance. Since the problem is non-linear, due to the measurement relation, we apply a sequential Monte Carlo method, or particle ...

متن کامل

Approximate estimation of the Cramer-Rao Lower Bound for Sinusoidal Parameters

-In this paper we present new approximation expressions for the Cramer-Rao Lower Bound on unbiased estimates of frequency, phase, amplitude and DC offset for uniformly sampled signal embedded in white-Gaussian noise. This derivation is based on well-known assumptions and a novel set of approximations for finite series of trigonometric functions. The estimated Cramer-Rao Lower Bounds are given i...

متن کامل

Sequential Estimators .and Tiie Cramer-rao Lower Bound

summary While all nonsequential unbiased estimators of the normal mean have variances which must obey the Cramer-Rao inequality, it is shown that some sequential unbiased estimators do not.

متن کامل

Cramer-Rao Lower Bound Computation Via the Characteristic Function

The Cramer-Rao Lower Bound is widely used in statistical signal processing as a benchmark to evaluate unbiased estimators. However, for some random variables, the probability density function has no closed analytical form. Therefore, it is very hard or impossible to evaluate the Cramer-Rao Lower Bound directly. In these cases the characteristic function may still have a closed and even simple f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 1994

ISSN: 1053-587X

DOI: 10.1109/78.324755